Further processing options
available via Open Access

Battling antibiotic resistance: can machine learning improve rescribing?

Saved in:

Bibliographic Details
Authors and Corporations: Ribers, Michael (Author), Ullrich, Hannes (Author)
Other Authors: Ullrich, Hannes [Author]
Type of Resource: E-Book
Language: English
published:
Series: Deutsches Institut für Wirtschaftsforschung: Discussion papers ; 1803
Subjects:
Source: Verbunddaten SWB
Lizenzfreie Online-Ressourcen
Description
Summary: Antibiotic resistance constitutes a major health threat. Predicting bacterial causes of infections is key to reducing antibiotic misuse, a leading driver of antibiotic resistance. We train a machine learning algorithm on administrative and microbiological laboratory data from Denmark to predict diagnostic test outcomes for urinary tract infections. Based on predictions, we develop policies to improve prescribing in primary care, highlighting the relevance of physician expertise and policy implementation when patient distributions vary over time. The proposed policies delay antibiotic prescriptions for some patients until test results are known and give them instantly to others. We find that machine learning can reduce antibiotic use by 7.42 percent without reducing the number of treated bacterial infections. As Denmark is one of the most conservative countries in terms of antibiotic use, this result is likely to be a lower bound of what can be achieved elsewhere.
Physical Description: 1 Online-Ressource (circa 42 Seiten); Illustrationen