Further processing options
Sparse Representation, Modeling and Learning in Visual Recognition: Theory, Algorithms and Applications.
Saved in:
Authors and Corporations: | |
---|---|
Edition: | 1st ed. |
Type of Resource: | E-Book |
Language: | English |
published: | |
Series: |
Advances in Computer Vision and Pattern Recognition Series
|
Subjects: | |
Source: | Ebook Central |
ISBN: | 9781447167143 |
Table of Contents:
- Intro
- Preface
- Contents
- Mathematical Notation
- Part I Introduction and Fundamentals
- 1 Introduction
- 1.1 Sparse Representation, Modeling, and Learning
- 1.1.1 Sparse Representation
- 1.1.2 Sparse Modeling
- 1.1.3 Sparse Learning
- 1.2 Visual Recognition
- 1.2.1 Feature Representation and Learning
- 1.2.2 Distance Metric Learning
- 1.2.3 Classification
- 1.3 Other Applications
- 1.3.1 Single-Pixel Cameras
- 1.3.2 Superresolution
- References
- 2 The Fundamentals of Compressed Sensing
- 2.1 Sampling Theorems
- 2.2 Compressive Sampling
- 2.2.1 Random Projection and Measurement Matrix
- 2.2.2 Sparsity
- 2.2.3 Structured Sparsity
- 2.3 ell0, ell1 and ell2 Norms
- 2.4 Spark and Singleton Bound
- 2.5 Null Space Property
- 2.6 Uniform Uncertainty Principle, Incoherence Condition
- 2.7 ell1 and ell0 Equivalence
- 2.8 Stable Recovery Property
- 2.9 Information Theory
- 2.9.1 K-sparse Signal Model
- 2.9.2 The Entropy of K-sparse Signals
- 2.9.3 Mutual Information
- 2.10 Sparse Convex Optimization
- 2.10.1 Introduction to Convex Optimization
- 2.10.2 Gradient, Subgradient, Accelerated Gradient
- 2.10.3 Augmented Lagrangian Method
- References
- Part II Sparse Representation, Modeling and Learning
- 3 Sparse Recovery Approaches
- 3.1 Introduction
- 3.2 Convex Relaxation
- 3.2.1 Linear Programming Solutions
- 3.2.2 Second-Order Cone Programs with Log-Barrier Method
- 3.2.3 ell1-Homotopy Methods
- 3.2.4 Elastic Net
- 3.3 Greedy Algorithms
- 3.3.1 MP and OMP
- 3.3.2 CoSaMP
- 3.3.3 Iterative Hard Thresholding Algorithm
- 3.4 Sparse Bayesian Learning
- 3.4.1 Bayesian Viewpoint of Sparse Representation
- 3.4.2 Sparse Representation via Relevance Vector Machine
- 3.4.3 Sparse Bayesian Learning
- 3.5 ell0-Norm Gradient Minimization
- 3.5.1 Counting Gradient Difference.
- 3.5.2 ell0-Norm Sparse Optimization Problems
- 3.5.3 ell0-Norm Sparse Solution
- 3.5.4 Applications
- 3.6 The Sparse Feature Projection Approach
- 3.6.1 Gaussian Process Regression for Feature Transforms
- 3.6.2 Sparse Projection of Input Feature Vectors
- References
- 4 Robust Sparse Representation, Modeling and Learning
- 4.1 Introduction
- 4.2 Robust Statistics
- 4.2.1 Connection Between MLE and Residuals
- 4.2.2 M-Estimators
- 4.3 Robust Sparse PCA
- 4.3.1 Introduction
- 4.3.2 PCA
- 4.3.3 Robust Sparse Coding
- 4.3.4 Robust SPCA
- 4.3.5 Applications
- References
- 5 Efficient Sparse Representation and Modeling
- 5.1 Introduction
- 5.1.1 Large-Scale Signal Representation and Modeling
- 5.1.2 The Computation Complexity of Different Sparse Recovery Algorithms
- 5.2 The Feature-Sign Search Algorithms
- 5.2.1 Fixed-Point Continuations for ell1-minimization
- 5.2.2 The Basic Feature-Sign Search Algorithm
- 5.2.3 The Subspace Shrinkage and Optimization Algorithm
- 5.3 Efficient Sparse Coding Using Graphical Models
- 5.3.1 Graphical Models of CS Encoding Matrix
- 5.3.2 Bayesian Compressive Sensing
- 5.3.3 Bayesian Compressive Sensing Using Belief Propagation (CS-BP)
- 5.4 Efficient Sparse Bayesian Learning
- 5.4.1 Introduction
- 5.4.2 Sequential Sparse Bayesian Models
- 5.4.3 The Algorithm Flowchart
- 5.5 Sparse Quantization
- 5.5.1 Signal Sparse Approximation Problems
- 5.5.2 K-Highest Sparse Quantization
- 5.6 Hashed Sparse Representation
- 5.6.1 Hash Functions
- 5.6.2 Structured Dictionary Learning
- 5.6.3 Hashing and Dictionary Learning
- 5.6.4 Flowchart of Algorithm
- 5.7 Compressive Feature
- 5.7.1 Generating Compressive
- 5.7.2 Applications
- References
- Part III Visual Recognition Applications
- 6 Feature Representation and Learning
- 6.1 Introduction
- 6.2 Feature Extraction.
- 6.2.1 Feature Representation Using Sparse Coding
- 6.2.2 Feature Coding and Pooling
- 6.2.3 Invariant Features
- 6.3 Dictionary Learning
- 6.3.1 K-SVD
- 6.3.2 Discriminative Dictionary Learning
- 6.3.3 Online Dictionary Learning
- 6.3.4 Supervised Dictionary Learning
- 6.3.5 Joint Dictionary Learning and Other Tasks
- 6.3.6 Applications
- -Image/Video Restoration
- 6.4 Feature Learning
- 6.4.1 Dimensionality Reduction
- 6.4.2 Sparse Support Vector Machines
- 6.4.3 Recursive Feature Elimination
- 6.4.4 Minimum Squared Error (MSE) Criterions
- 6.4.5 Elastic Net Criterions
- 6.4.6 Sparse Linear Discriminant Analysis
- 6.4.7 Saliency Feature Mapping Using Sparse Coding
- References
- 7 Sparsity-Induced Similarity
- 7.1 Introduction
- 7.2 Sparsity-Induced Similarity
- 7.2.1 The Clustering Condition of Subspaces
- 7.2.2 The Sparse-Induced Similarity Measure
- 7.2.3 Nonnegative Sparsity-Induced Similarity
- 7.2.4 Some Basic Issues in SIS
- 7.2.5 A Toy Problem
- 7.3 Application
- 7.3.1 Label Propagation
- 7.3.2 Human Activity Recognition
- 7.3.3 Visual Tracking
- 7.3.4 Image Categorization
- 7.3.5 Spam Image Cluster
- References
- 8 Sparse Representation and Learning-Based Classifiers
- 8.1 Introduction
- 8.2 Sparse Representation-Based Classifiers (SRC)
- 8.2.1 The SRC Algorithm and Its Invariants
- 8.2.2 Classification Error Analysis
- 8.3 Sparse Coding-Based Spatial Pyramid Matching (ScSPM)
- 8.3.1 Assignment-Based Sparse Coding
- 8.3.2 The Spatial Pooling
- 8.3.3 The Sparse Coding-Based Spatial Pyramid Matching
- 8.4 Sparsity Coding-Based Nearest Neighbor Classifiers (ScNNC)
- 8.4.1 Sparse Coding-Based Naive Bayes Nearest Neighbor
- 8.4.2 Sparse Approximated Nearest Points (SANP) Approaches
- 8.5 Sparse Coding-Based Deformable Part Models (ScDPM)
- 8.5.1 Deformable Part Models
- 8.5.2 Sparselet Models.
- 8.5.3 The Flowchart of ScDPM
- References
- Part IV Advanced Topics
- 9 Beyond Sparsity
- 9.1 Low-Rank Matrix Approximation
- 9.1.1 Introduction
- 9.1.2 ell2-norm Wiberg Algorithm
- 9.1.3 ell1-norm Wiberg Algorithm
- 9.2 Graphical Models in Compressed Sensing
- 9.2.1 Inference via Message Passing Algorithm
- 9.2.2 Inference via Approximate Message Passing Algorithm
- 9.3 Collaborative Representation-Based Classifiers
- 9.3.1 Sparse Representation and Collaborative Representation
- 9.3.2 Collaborative Representation-Based Classification (CRC)
- 9.4 High-Dimensional Nonlinear Learning
- 9.4.1 Kernel Sparse Representation
- 9.4.2 Anchor Points Approaches
- 9.4.3 Sparse Manifold Learning
- References
- Appendix A Mathematics
- Appendix B Computer Programming Resourcesfor Sparse Recovery Approaches
- Appendix C The Source Code of Sparsity InducedSimilarity
- Appendix DDerivations
- Index.